skip to main content


Search for: All records

Creators/Authors contains: "Larson, Shane"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract ESA and NASA are moving forward with plans to launch LISA around 2034. With data from the Illustris cosmological simulation, we provide analysis of LISA detection rates accompanied by characterization of the merging massive black hole population. Massive black holes of total mass ∼105 − 1010M⊙ are the focus of this study. We evolve Illustris massive black hole mergers, which form at separations on the order of the simulation resolution (∼kpc scales), through coalescence with two different treatments for the binary massive black hole evolutionary process. The coalescence times of the population, as well as physical properties of the black holes, form a statistical basis for each evolutionary treatment. From these bases, we Monte Carlo synthesize many realizations of the merging massive black hole population to build mock LISA detection catalogs. We analyze how our massive black hole binary evolutionary models affect detection rates and the associated parameter distributions measured by LISA. With our models, we find massive black hole binary detection rates with LISA of ∼0.5 − 1 yr−1 for massive black holes with masses greater than 105M⊙. This should be treated as a lower limit primarily because our massive black hole sample does not include masses below 105M⊙, which may significantly add to the observed rate. We suggest reasons why we predict lower detection rates compared to much of the literature. 
    more » « less
  2. Abstract The Laser Interferometer Space Antenna (LISA) will be a transformative experiment for gravitational wave astronomy, and, as such, it will offer unique opportunities to address many key astrophysical questions in a completely novel way. The synergy with ground-based and space-born instruments in the electromagnetic domain, by enabling multi-messenger observations, will add further to the discovery potential of LISA. The next decade is crucial to prepare the astrophysical community for LISA’s first observations. This review outlines the extensive landscape of astrophysical theory, numerical simulations, and astronomical observations that are instrumental for modeling and interpreting the upcoming LISA datastream. To this aim, the current knowledge in three main source classes for LISA is reviewed; ultra-compact stellar-mass binaries, massive black hole binaries, and extreme or interme-diate mass ratio inspirals. The relevant astrophysical processes and the established modeling techniques are summarized. Likewise, open issues and gaps in our understanding of these sources are highlighted, along with an indication of how LISA could help making progress in the different areas. New research avenues that LISA itself, or its joint exploitation with upcoming studies in the electromagnetic domain, will enable, are also illustrated. Improvements in modeling and analysis approaches, such as the combination of numerical simulations and modern data science techniques, are discussed. This review is intended to be a starting point for using LISA as a new discovery tool for understanding our Universe. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  3. null (Ed.)